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The transient forced convection in laminar flow inside a parallel plate channel subjected 
to periodically varying inlet temperature is solved by using a hybrid scheme that combines 
the generalized integral transform technique with a second-order accurate finite 
differences. Semi-analytical results are presented for the variations in the amplitude of 
periodically varying fluid bulk temperature and wall heat flux along the channel length 
for different frequencies. An approximate formula for the decay of the peak bulk 
temperature amplitude is developed. 
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Introduction 

Transient analysis of convective heat transfer inside ducts is 
important in the analysis of start-up and shutdown of heat 
exchange devices, or other transients arising in their operating 
conditions. Unsteady behavior of temperature distribution in 
such devices can reduce thermal performance and produce 
severe thermal stresses, thus jeopardizing the equipment. 
Therefore, accurate prediction of temperature and heat-flux 
distributions in unsteady forced convection are important for 
precise control of heat-exchange equipment. A better 
understanding of the behavior of regenerative and recuperative 
heat exchangers, gas turbines blades, and other devices under 
periodically operating conditions is also important. Most of the 
earlier studies on the subject were concerned with the simplified 
analysis of the problem based on slug flow approximation 
(Cotta and Ozisik 1986; Kakac and Yener 1973; Sparrow and 
de Farias 1968). 

Recently, Kim, Cotta and Ozisik (1990) presented results 
based on the lowest-order analytical solution for transient 
laminar forced convection with parabolic flow inside ducts 
resulting from an arbitrarily varying inlet temperature by a 
hybrid approach using the generalized integral transform and 
classical Laplace transform techniques. 

Kakac, Li and Cotta (1990) studied the unsteady laminar 
forced convection in ducts with periodic variation of inlet 
temperature by considering a quasi-steady response, neglecting 
initial transients. This approach led to a complex-valued 
problem that was then handled by the generalized integral 
transform technique. 

Hatay et al. (1991) applied a second-order accurate explicit 
finite-differences scheme to the solution of unsteady forced 
convection in laminar parabolic channel flow subjected to 
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sinusoidaUy varying inlet temperature: however, only the 
amplitudes of temperature oscillations along the centerline of 
the channel were reported. The stability analysis for this expficit 
scheme reveals that the diffusion term in the transversal 
coordinate introduces another restriction on the stability 
criteria in addition to that imposed by the Courant number. 
Such an undesirable effect can be circumvented by a hybrid 
numerical-analytical approach proposed by Cotta and Gerk 
(1993) where the spatial derivatives in the normal direction are 
removed by the application of the generalized integral 
transform technique, and the resulting system of hyperbolic 
equations in the axial direction is solved by finite differences. 
In addition, such a hybrid approach can provide an analytical 
expression for accurate computation of heat fluxes anywhere 
within the duct cross section, in contrast to the fully numerical 
approach where the accurate evaluation of gradients to 
compute heat fluxes require very fine meshes. 

Analysis 

We consider transient forced convection in thermally 
developing, hydrodynamically developed laminar flow between 
parallel plates, subjected to a sinusoidal variation of inlet 
temperature. We assume that the physical properties are 
constant, whereas viscous dissipation, free convection, and 
axial conduction effects are negligible. Then, the mathematical 
formulation of the problem is given by 

OT(r, z, t) OT(r, z, t) 02T(r, z, t) 
- - + u ( r )  . . . .  , O < r  <rw, z>O,  

0t t3z ar 2 
t > 0 (la) 

T(r, z, O) = Ti, O < r <_ rw, z > O (lb) 

T(r, 0, t) = Ti + AT sin(cot), 0 < r _< r,,, t > 0 ( l c )  

c3T(O, z, t) 
=0 ,  z > 0 ,  t > 0  (ld) 

~r 

T(rw, z, t) = Ti, z > 0, t > 0 (Ie) 
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This problem is now expressed in the dimensionless form 

¢~(R,  Z, x) ~O(R, Z, z) ~ZO(R, Z, ~) 
+ W ( R )  = 

0"~ t~Z t~R 2 ' 

i n 0 < R <  1, Z > 0 ,  t > 0  (2a) 

O(R, z ,  o) = 0, 0 < R < ], z _> 0 (2b) 

O(R, 0, z) = sin(fir), 0 _< R _< 1, • > 0 (2c) 

do(0, z, ~) 
~ = 0, Z > 0, x > 0 (2d) 

Off, Z, x) = 0, Z > 0, ~ > 0 (2e) 

We proceed by seeking a formal solution to the system 
(Equation 2) through the combined use of the generalized 
integral transform technique and the finite differences method. 

To remove the partial derivatives with respect to the normal 
variable from this system by the application of the generalized 
integral transform technique, we consider the following 
auxiliary problem: 

d2~IJ(/zi, R) 
dR ~ + la~W(la~, R) = O, 0 < R < 1 (3a) 

d'e0~, R) 
dR = 0, R = 0 (3b) 

• (p~, R) = 0, R = 1 (3c) 

which is readily solved to yield 

• (/z i, R) = cos #jR, i = 1, 2 . . . .  (4a) 

( 2 i -  1) 
#i = ~, i = 1, 2 . . . . .  (4b) 

2 

Using the eigenfunctions of this system, the integral 
transform pair with respect to the R variable is defined as 

Inversion: O(R, Z, ~) = ~ ~ i ,  R) Oi(Z, z) (5a) 
1=1 N~ 12 

Transform: Or(Z, x) = ~ O(R, Z, x) dR (5b) 
= 0  N~/z 
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where N i is the normalization integral 

f. Ni = ~2~i,  R)dR (5c) 
=0 

Even though the integral in Equation 5c can readily be 
performed, for generality we prefer to carry out the analysis by 
using the symbol N i. 

We now operate on Equation 2a with the operator S~=o 
PP(~i, R)/Ni 1/2] dR to obtain 

0Oi(Z, ~) ~ ~ ,  11) O0(R, Z, 
- -  + W ( R ) - -  ~) dR + .~Oi(Z, x) = 0 

0"C Jg = O  N~/2 ~Z 
(6) 

where the bar denotes the transform with respect to the R 
variable. 

The integral term in Equation 6 is expressed in the alternative 
form by substituting the inversion formula (Equation 5a) for 
O(R, Z, ~), to yield 

OOi(Z , z) O~)k(Z , '[) 
+ ~ Ai= ~ +/zi2Oi(Z, x) = 0, i = I, 2 . . . . .  

(~X k = 1 d Z  

Z > 0 ,  x > 0  (7a) 
where, 

Aik = Aid M1/2MU 2 W(R)wtu(fl i, R)tP(flk, R)dR (7b) 
" ' i  " 'k  =0 

and the initial and inlet conditions (Equation 2b) and 
(Equation 2c), respectively, are transformed through the 
operator S~ = o [~F(/zi, R)/N~/2] dR, to give 

Oi(Z, O) = 0, Z > 0 (7c) 

Oi(0, x) = f i ,  i = 1, 2 . . . . .  ~ > 0 (7d) 

where 

1 f. sin(~z)~(#i, R)dR (7e) 
~ 0  I 

The infinite system of hyperbolic equations (Equation 7a) 
for the transform O(Z,~) subjected to the conditions 
(Equations 7c and d) can be solved by finite differences after 
truncating with a sufficiently large order N. Using a 
second-order accurate explicit finite-differences scheme based 

Notation 

alk 
Dh 
N 
Nl 
Q,,(z, ~) 
rw 
r 
R 
t 
T, 
T(r, z, t) 
AT 
um 
u(r) 
W(R) 

coefficients matrix, Equation 7b 
hydraulic diameter (=  4 r,,) 
number of terms in eigenvalue expansion 
normalization integral, Equation 5c 
dimensionless wall heat flow 
half the spacing between parallel plates, m 
normal coordinate, m 
dimensionless normal coordinate (=  r/r.) 
time, s 
inlet temperature, K 
fluid temperature, K 
reference temperature difference, K 
mean flow velocity, m/s 
flow velocity, m/s 
dimensionless flow velocity 
(-- u(r)/16 u= = 3(1 - R2ff32) 
discretization parameter in the normal direction 
(= ax/(~R)') 

Z 
Z 

axial coordinate, m 
dimensionless axial coordinate (= OtZ,/UraDh 2) 

Greek letters 

7 
2 
O(R, z, z) 
OdZ, x) 

Ob.(Z) 
• rui, R) 
#l 
T 

thermal diffusivity of the fluid, me/s 
Courant number (=  c Ax/z~Z) 
discretization parameter, defined by Equation 8d 
dimensionless temperature (=  IT(r, z, t) - TJAT]) 
dimensionless fluid bulk temperature, defined 
by Equation 9 
dimensionless peak bulk temperature 
eigenfunctions of eigenvalue problem 3 
eigenvahes of eigenvalue problem 3 
dimensionless time (= =t/r 2) 
dimensionless frequency of oscillations (=  oJr2/=) 
frequency of oscillations, Hz 
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on an extension of the Warming and Beam (1976) upwind 
scheme, the system (Equation 7) becomes 

Prodictor: 

N 

',.I = ~)~.j - -  ~" E A i k (~ )k , j  - -  ( ~ k , j -  1) - -  " i2ATO~, j  (8a) 
k = 1  

Correct®r: 

= (~n :F 1 A {~n=[: 1 /~n:F 1 + - • ~ - 
Vk,j  - 1 ! ~Xik~Vk.j 

k = 1  

N 
" 2 " O" -,~ ~ /l~k(Ok,j -- Ok,j-1 + k,j-2) 

k = l  

• 2ATO"~'] -~ ' i  ij ( 8 b )  

where, 
AT 

)~=A---Z and O~.j~O(nAx, jAZ) (8c, d) 

and the superscript ,~1 denotes evaluation at an intermediate 
time. 

To solve this system one needs to march along Z 
and ~ up to a final axial position and time. Then, the 
unknown temperature O(R, Z, ~) is recovered at any desired 
normal position R, for the axial positions Z and time z specified 
in the numerical solution, by the application of the inversion 
formula (Equation 5a). 

The stability analysis of this scheme, presented in the 
appendix, leads to the following stability criteria: 

0 < yi < 2, i = 1, 2 . . . . .  N (8e) 

where ~ = c~ Az/AZ is the Courant number. 

Tab le  I Comparison of present hybrid solution ®hyb with the lowest-order analytical solution etoe given by Kim 
et al, (1990) and the numerical solution e,um given by Hatay et al. (1991), for £~ = 0.05, 0.1 and 0.5 (y = 0.625, 
y = 0.18) 

= 0.05 

z Z 5 x 10 -3 1 x 10 .2 2 x 10 -2 3 x 10 -2 5 x 10 -2 1 x 10 -1 

O los 0.0372 0.0296 0.0188 0.0117 0.0039 0 
1 O hyb 0.0397 0.0338 0.0249 0.0184 0.0101 0 

® n u m  0.0399 0.0340 0.0251 0.0185 0.0101 0 

® los 0.1937 0.1630 0.1173 0.0846 0.0439 0.0084 
5 ® hyb 0.1986 0.1689 0.1247 0.0922 0.0504 0.0112 

® n u m  0.2043 0.1731 0.1273 0.0943 0.0516 0.0114 

O los 0.3779 0,3200 0.2334 0.1707 0.0912 0.0190 
10 ® hyb 0.3850 0,3275 0.2416 0.1787 0.0977 0.0216 

® num 0.3950 0,3345 0.2466 0.1824 0.0998 0.0211 

£ /=0 .10  

z Z 5 x 10 -3 1 x 10 -2 2 x 10 -2 3 x 10 -2 5 x 10 -2 1 x 10 - I  

® los 0.0743 0.0592 0.0376 0.0234 0.0079 0 
1 ® hyb 0.0793 0.0675 0.0498 0.0369 0.0202 0 

® hum 0.0797 0.0678 0.0500 0.0370 0.0203 0 

® los 0.3757 0.3164 0.2281 0.1647 0.0857 0.0165 
5 ® hyb 0.3849 0.3274 0.2415 0.1786 0.0977 0.0216 

® num 0.3950 0.3345 0.2466 0.1824 0.0998 0.0221 

® los 0.6643 0.5635 0.4124 0.3024 0.1626 0.0343 
10 ® hyb 0.6758 0.5748 0.4239 0.3135 0.1715 0.0379 

® n u m  0.6933 0.5871 0.4329 0.3202 0.1752 0.0388 

Q = 0,50 

"C Z 5 x 10 -3 1 x 10 -2 2 × 10 -2 3 x 10 -2 5 x 10 -2 1 x 10 -1 

O los 0,3586 0.2870 0.1839 0.1149 0.0391 0 
1 O hyb 0.3810 0.3244 0.2393 0.1770 0.0968 0 

O num 0,3827 0.3257 0.2403 0.1777 0.0972 0 

O los 0.4935 0.4367 0.3443 0.2704 0.1634 0.0423 
5 ® hyb 0.4805 0.4087 0.3014 0.2229 0.1219 0.0270 

® n u m  0,4931 0.4175 0.3079 0.2277 0.1246 0.0276 

® los -0 .7665  -0 .6578  -0 .4912  -0 .3663 -0 .2015  -0 .0423  
10 ® hyb - 0.7701 - 0.6550 - 0.4831 - 0.3573 - 0.1954 -0 .0432  

O n u m  -0.7901 -0 .6690  -0 .4933  -0 .3649  -0 .1996  -0 .0442 
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Knowing the dimensionless temperature profile O(R, Z, z), 
the fluid bulk temperature Oh(Z, z) can be evaluated from its 
definition 

Io Oh(Z, ¢) = 16 W(R)O(R, Z, ¢)dR (9) 

An alternative form of this expression, which is more 
convenient for computational purposes, is obtained by 
replacing O(R,Z,¢) by its equivalent inversion formula 
(Equation 5a) as 

Oh(Z, ~) = 16 
01 

J=l N ~  Oi(Z, ~) (lOa) 

where, 

f. ~, = W(R)V(~, ,  R~R (lOb) 
= 0  

Also of interest is the evaluation of the dimensionless heat 
flux at the outer boundary, 00(1, Z, ~)/OR, for which an explicit 
analytical expression is readily obtained according to the 
inversion formula (Equation 5a) as 

00(1, Z, ~) _- 1 ~ dV(/z,, 1) Oi(Z ' "r) (11) 
OR N~/2 i= 1 dR 

R e s u l t s  and  d i s c u s s i o n  

We now present numerical results for the fluid bulk 
temperature and wall heat flux, and compare the present hybrid 
method of solution to the lowest-order analytical and 
numerical methods of solution reported in the literature. We 
made the comparison for the case of three dimensionless 
frequencies, t) = 0.05, 0.1 and 0.5. 

Table 1 shows a comparison of fluid bulk temperature 
distributions given by the present hybrid approach, the purely 
numerical solution by Hatay et al. (1991) and the lowest-order 
analytical solution by Kim et al. (1990). The accuracy of the 
lowest-order solution decreases for small dimensionless times 
and large distances from the inlet. The agreement between the 
purely numerical and hybrid approaches is very good; the 
maximum deviation being 2.6 percent for large times near the 
inlet. However, the limitation to the accuracy of the purely 
numerical solution technique for the calculation of heat flux, 
resulting from the stability restriction imposed on the size of 
normal steps, should be recognized. Because the evaluation of 
heat flux distributions depends on numerical computation of 
derivatives with respect to the normal variable, the normal 
mesh size, AR, has to be small enough to ensure accuracy, 
especially near the channel inlet where gradients are steeper. 
Conversely, with the hybrid approach, heat-flux distributions 
at any specified location within the duct cross section can be 
evaluated a posteriori, using the explicit analytic expression 
given by the derivative of the inversion formula (Equation 5a). 

For the situation shown on Table 1, the execution times for 
both schemes is practically the same; however, the execution 
time can be further reduced and dispersive errors virtually 
eliminated with the hybrid scheme by increasing the Courant 
number toward unity. Such flexibility is limited when dealing 
with the purely numerical approach because an increase in the 
Courant number requires a decrease in the value of the 
parameter y = Az/(AR) 2 to satisfy the more restricted stability 
criteria. Because AR has to remain small, a decrease in the 
parameter y requires a decrease in At as well. The stability 
of the present hybrid approach depends only on the value of 
the Courant number, whereas in the purely numerical scheme 
two different stability criteria need to be satisfied. 
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1; 

Variation of the bulk temperature as a function of time 

The present results with the hybrid method were fully 
converged with a maximum of N = 15 terms in the series, and 
the Courant number value was maintained as 0.93. 

Figures la and b show the variation of the bulk temperature 
as a function of time at different axial positions for t) = 0.1 
and 0.5, respectively, for sinusoidal oscillation of inlet 
temperature. As expected, the amplitude becomes smaller with 
increasing distance from the inlet. This trend is better 
envisioned in Figure 2, which shows the maximum (peak) bulk 
temperature decaying exponentially with the axial distance 
from the inlet. The effects of frequencies within the range 
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Figure 2 Variation of the maximum (peak) bulk temperature as a 
function of the axial locations 
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1: 

Variation of the wall heat flux as a function of time for 

considered here on the peak bulk temperature appear to be 
negligible. 

Figures 3a and b show the variation of the heat flux at the 
outer boundary of the channel as a function of time at different 
axial positions for frequencies fl = 0.1 and 0.5, respectively. A 
comparison of the results in Figures 1 and 3 reveals that when 
the fluid bulk temperature is greater than the wall temperature, 
the heat flux is negative, which implies that the heat flows from 
the fluid to the wall and vice versa. 

Based on the cases studied here, it seems that the peak bulk 
temperature varies exponentially with the dimensionless axial 
distance Z along the channel Therefore, we developed the 
following approximate formula for the decay of the peak bulk 
temperature with distance 

®~,.(Z) = exp [- (aZ + b)] (12) 

where the coefficients a and b are listed on Table 2. 

C o n c l u s i o n s  

A hybrid numerical-analytical methodology is presented for 
solving laminar heat transfer in the thermally developing region 
of a parallel plate channel subjected to periodic variation of 
inlet temperature. The method has advantages over conven- 
tional purely numerical approaches in that the heat flux 
anywhere in the medium can be computed a posteriori by using 
analytical expressions. Also, the method is less restricted by 
stability considerations, thus allowing more flexibility to 
improve the accuracy of computations. The results show that 
the amplitude of oscillations of bulk temperature and wall heat 
flux decays with the distance along the duct. An analytical 
expression is presented for the calculation of the exponential 
decay of the peal/bulk temperature. 
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Table 2 Coefficients a and b of Equation 12 

Max error in 
Range of Z a b Ohm (percent) 

Z ~; 0.006 40.855 0.0262 1.6 
Z > 0.006 30.175 0.0892 2.0 
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A p p e n d i x :  S t a b i l ! t y  ana lys is  

To examine the stability of the explicit numerical scheme used 
here for the solution of system (Equation 7), we rewrite this 

Unsteady laminar forced convection: R. O. C. Guedes and M. hi. Ozisik 

system in the form of the classical wave equation, through the 
transformation 

O~(Z, z) = O,(Z, ¢)exp [p~z] (A1) 

which yields the alternative form 

0U 0U 
- -  + A * ( T )  - -  = 0 ( A 2 )  
c~r ~Z 

where, 

A*(~) = {A*(~)} = A, k e x p F - #  2 -/~t2)~1 (A3) 

with Alk given by Equation 7h, 

U = {O~(Z, ~), O~(Z, z) . . . . .  O~(Z, z)}r (A4) 

and the superscript T denotes the transpose. 
Warming and Beam (1976) studied the stability of the upwind 

scheme applied to a model equation similar to Equation A2. 
In their analysis, the coefficients matrix A* was assumed 
constant to apply linear stability theory. Then, by applying a 
yon Neumann type stability analysis, it can be shown that the 
upwind scheme is stable if and only if 

0 _< 7i < 2, i = 1, 2 . . . . .  N (AS) 

where the Courant number Yi is defined as 

AT 
Yi = Ct~-~ (A6) 

for all eigenvalues cl of A* and with the restriction that 
c i > 0 .  
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